1 | import numpy as np |
1 | sns.set(color_codes = True) |
1 | sns.distplot(x,bins=20,kde=False) |
1 | x = np.random.gamma(6,size=200) |
1 | mean,cov = [0,1],[(1,.5),(.5,1)] |
x | y | |
---|---|---|
0 | -0.174087 | 1.795256 |
1 | -0.416757 | 0.638361 |
2 | -1.188138 | -0.331589 |
3 | -0.609992 | 0.435072 |
4 | -1.839588 | 1.710629 |
5 | -0.636881 | 0.890326 |
6 | -0.833977 | 0.792370 |
7 | 1.789158 | 2.060371 |
8 | 1.156777 | 0.663219 |
9 | 0.423476 | 0.673290 |
10 | -0.412169 | 0.751990 |
11 | -1.126475 | 0.535133 |
12 | 1.323243 | 1.533676 |
13 | -0.023044 | -0.599542 |
14 | 0.691180 | 0.879479 |
15 | 1.478605 | 2.477569 |
16 | -1.637043 | -0.499630 |
17 | -0.094884 | 2.142044 |
18 | -0.989239 | 1.218270 |
19 | 1.420987 | 1.013807 |
20 | 0.360396 | 2.465208 |
21 | 1.358501 | 1.184887 |
22 | 2.339145 | 1.285469 |
23 | 1.282484 | 2.062299 |
24 | 0.854708 | 0.706735 |
25 | -0.223393 | -0.172632 |
26 | -0.513652 | 0.535946 |
27 | 1.207449 | 1.181039 |
28 | -1.219564 | -1.178302 |
29 | -0.855500 | 0.167194 |
… | … | … |
170 | 1.022425 | 1.816807 |
171 | 0.344980 | 0.766577 |
172 | 1.043292 | 0.955718 |
173 | 0.765037 | 2.321773 |
174 | 0.683540 | 0.501221 |
175 | 1.188854 | 0.022803 |
176 | -0.287907 | -0.166137 |
177 | -0.778977 | 0.036364 |
178 | -1.875389 | 0.689938 |
179 | 0.183550 | 1.683339 |
180 | 0.220839 | 1.396213 |
181 | 0.660952 | 1.921363 |
182 | -2.357542 | 1.145418 |
183 | 0.521454 | 0.304456 |
184 | -0.321098 | -1.072025 |
185 | -0.265391 | 1.166742 |
186 | 1.182235 | 2.652254 |
187 | 0.920143 | 1.772478 |
188 | 0.620841 | 1.806727 |
189 | -0.892951 | 0.177710 |
190 | -0.463518 | 2.034266 |
191 | -0.031959 | 0.967620 |
192 | -0.412957 | 0.324511 |
193 | -0.021698 | 0.949692 |
194 | 1.897446 | 2.806375 |
195 | -0.346429 | 0.899780 |
196 | -0.320803 | -0.144683 |
197 | -0.332870 | 0.751261 |
198 | -0.579072 | 0.318083 |
199 | -0.889261 | 0.091241 |
200 rows × 2 columns
观察两个变量之间的分布关系最好用散点图
1 | sns.jointplot(x="x",y="y",data=df) |
1 | x,y = np.random.multivariate_normal(mean,cov,1000).T |
1 | iris = sns.load_dataset("iris") |